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INTRODUCTION
Most stained-glass windows comprise parts 
of building façades, in direct contact with rain 
and wind, as well as subject to vandalism or air 
pollutants. For this reason, they are some of the 
most vulnerable types of glass artworks (Palomar 
2013). Rain and pollution are the environmental 
factors that contribute most to glass alteration 
(Woisetschläger et al. 2000; Munier et al. 2002; 
Melcher and Schreiner 2005; Melcher et al. 2008; 
Gentaz et al. 2011; Lombardo et al. 2014; Palomar 
et al. 2018b; Palomar et al. 2019); nevertheless, 
temperature also plays an important role. 
Environmental temperature and solar radiation 
increase the temperature of stained-glass 
windows. This thermal variation can affect the 
glass and glassy materials of the window. The main 
harmful signs of degradation due to temperature 

fluctuations can be observed on enamels and 
grisailles, resulting in cracking, flaking, and, 
eventually, the detachment of surface vitreous 
paint from the glass support due to their different 
coefficients of thermal expansion. This effect has 
been observed principally on historic blue enamel 
(Van der Snickt et al. 2006; Becherini et al. 2008; 
Attard-Montalto and Shortland 2015) and also on 
broadly used grisaille paint (Schalm 2000).

This physical incompatibility is directly related 
to the natural heating of the different materials 
of a stained-glass window. To assess this 
heating in situ, it is necessary to use a portable 
technique, capable of measuring temperature in 
different areas over time, such as infrared (IR) 
thermography. Non-destructive and contactless, 
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this technique can document the thermal 
behaviours of different targets by quantifying 
the IR radiation re-emitted by the surface of the 
objects. An IR camera produces apparent surface 
temperature images based on calculations from 
the received IR radiation (emission and reflection) 
and black body emission laws (Bagavathiappan 
et al. 2013; Kylili et al. 2014; Palomar et al. 
2018a). The photo-thermal signal depends on 
parameters governing heat diffusion, i.e. thermal 
conductivity, thermal emissivity, thermal 
diffusivity, temperature, specific heat, density, 
and reflection. In addition, these parameters 
can be correlated with features of the surface, 
presence of delamination, presence of cracks, 
internal structure of the material, progress of a 
physical and chemical transformation, drying, and 
sedimentation (Bagavathiappan et al. 2013; Kylili 
et al. 2014).

IR thermography has been used in cultural 
heritage principally to detect moisture in historic 
buildings, to assess previous conservation 
treatments, and to identify hidden structures 
behind wall paintings (Balaras and Argiriou 2002; 
Camuffo et al. 2010; Imposa 2010; Morillas et al. 
2016). In addition to the application to building 
structures, IR thermography has also been applied 
to paintings on canvas or wood (Ambrosini et al. 
2010; Sfarra et al. 2011; Gavrilov et al. 2013; Sfarra 

et al. 2013), tapestries (Dulieu-Barton et al. 2007), 
books (Riccardi et al. 2010; Doni et al. 2014), and 
archaeological artefacts (Mercuri et al. 2011; 
Candoré et al. 2012) to evaluate their condition, to 
detect hidden damages, and to improve strategies 
for conservation.

IR thermography studies on historic glass are 
still scarce (Candoré et al. 2012; Palomar et al. 
2018a); nevertheless, IR thermography is a useful 
tool for the analysis of historic glass windows. 
Thermography has shown that the different 
materials in stained-glass windows, including 
glass, silver stain, enamel, grisaille, lead came, 
and soldered joints, have different reactions to IR 
radiation. Glass is heated due to the absorption 
of mid- and long-wave IR radiation, which leads 
to a progressive increase of apparent surface 
temperature. Enamels and grisailles experience 
a greater increase of their apparent surface 
temperature as compared with the colourless glass 
substrate due to absorption in the IR region. This 
behaviour depends on the thickness and colour of 
the surface layer (Palomar et al. 2018a).

The main goal of this study was to assess 
the feasibility of using IR thermography to 
characterize in situ the potential risk of damage 
due to thermal impact during the summer solstice 
of two Art Nouveau glass windows from the Casa-

Figure 1. a) Dining room window. Societé Artistique de Peinture sur Verre, 1904 CE, stained-glass window with three lights: 
H 188 cm × W 64 cm, H 210 cm × W 98 cm, and H 188 cm × W 64 cm; b) Atelier window. Societé Artistique de Peinture sur Verre, 
1904 CE, stained-glass window, H 260 cm × W 196 cm.

a b
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Museu Dr. Anastácio Gonçalves in Lisbon, Portugal. 
The influences of environmental temperature, 
solar radiation, and protective glazing on the 
thermal risk for historic glass windows were 
evaluated.

MATERIALS AND METHODS
Stained-glass windows
The Casa-Museu Dr. Anastácio Gonçalves in Lisbon 
has two glass windows in Art Nouveau style signed 
by the Societé Artistique de Peinture sur Verre, 
1904. One is located on the first floor in the Dining 
room (Figure 1a), and the other is in the Atelier on 
the second floor (Figure 1b). The latter panel is in a 
poor state of preservation with loss of the blue and 
purple enamels and has probably been retouched. 
Its left and upper panels, as viewed from inside 
the building, are shadowed by the architectural 
features. Both windows have exterior protective 
single-glazing. They are frameless glazing systems 
that permit the opening of both the glazings and 
the stained-glass windows. Ventilation slits, 
measuring less than 5 mm in some areas, separate 
the different protective glazings and the protective 
glass from the wall.

Infrared thermography
The characterisation of the surface thermal 
behaviour of the glass windows was carried out 
with a FLIR T650sc. The system used for the study 
comprises a detection device and electronic and 
computing instrumentation for monitoring. The 
detection system comprises an IR thermography 
camera with 20° × 15°/0.3 m field of view, 1.1 mRad 
spatial resolution, 50 mK at 30 °C thermal 
sensitivity, 7.5 μm to 13 μm spectral range, and 
an analysis module. Measurements can be taken 
from -40 °C to 120 °C, with 1 percent of accuracy 
of reading. In both windows, a daily monitoring of 
three images every five minutes was carried out, 
evaluating environmental temperature and solar 
radiation as heat sources.

RESULTS 
The monitoring of the glass apparent surface 
temperature showed the influence of the 
environmental temperature (Figure 2). In the 
mornings, an increase in the environmental 
temperature produced progressive heating of the 
glass. The same relationship was observed during 

Figure 2. Thermal variations of the indoor glass 
surface on a colourless glass from each window, and the 
environmental temperature in Lisbon measured by the 
Instituto Português do Mar e da Atmosfera

the cooling of the glass surface after sunset due 
to the cooling of the environmental temperature. 
However, the temperature measured on the 
interior glass surface was consistently higher than 
the exterior environmental temperature (Figure 
2). This behaviour is due to the greenhouse effect, 
which heats the different materials within a room, 
e.g. wood, pottery, textiles, increasing the room’s 
interior temperature and, therefore, the interior 
glass temperature (Lechner 1990).

On the Dining room panel, the temperature of the 
colourless glass of the lady’s shirt rose to 32 ºC 
as a consequence of the external environmental 
temperature. In the same way, on the Atelier panel, 
the temperature detected on the colourless glass 
in the middle of the panel rose to 30 ºC (Figure 2). 
As expected, during the night, the temperatures 
decreased on the colourless glass in the Dining 
room panel to approximately 28 ºC and on the 
Atelier panel to approximately 25 ºC.
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Despite the impact of the environmental 
temperature, the main factor affecting the glass 
surface temperature is direct solar radiation. In 
the Dining room panel, the temperature of the 
colourless glass increased approximately 10 ºC 
during the first hour of direct solar radiation 
and decreased 9 ºC when the sun set behind the 
buildings (Figure 2). In the Atelier panel, the 
impact of solar radiation is lessened because of 
the shorter period of exposure to direct sunlight, 
the panel orientation, and, possibly, a lower 
environmental temperature. In the Atelier panel, a 
total increase of 3 ºC during the first 40 minutes of 
direct solar radiation and a decrease of 5 ºC during 
the hour after sunset were recorded (Figure 2).

A relationship between glass colour and 
maximum apparent surface temperature was also 
observed. The colourless glass either does not 
contain chromophores or the effects of multiple 
chromophores negate each other; therefore, the 
colourless glass does not absorb in the near IR 
region. However, the green glass rendering the 
vegetation showed the highest apparent surface 
temperature (Figure 3). The main chromophores 
of green glass are iron (Fe) and copper (Cu) 
(Scholze 1980; Fernández Navarro 2003). The 
Fe²+ ions produce two absorptions in the infrared 
region at 1100 nm and 2100 nm, as well as an 

absorption band in the visible region at 440 nm 
(Paul 1990; Möncke et al. 2014). The Cu2+ ions 
produce a broad absorption band at 790 nm 
due to the electronic transition ²E • ²T₂, with a 
significant deformation due to the Jahn-Teller 
effect. The tail of this wide single band enters into 
the near-IR region (Paul 1990; Fernández Navarro 
2003; Möncke et al. 2014). 

A high temperature was also detected in the lady’s 
corset, an area with brown colouration. This glass 
is an amber glass. The chromophore is formed 
by a mixed tetrahedral coordination, in which 
one Fe³+ ion is surrounded by three oxygen ions 
bonded to silicon and one sulphide anion bonded 
to alkali ions for electro-neutrality (FeO₃S). This 
coordination has two absorption bands at 295 
nm and at 425 nm, in the ultraviolet and visible 
regions, respectively (Weyl 1967; Beerkens and 
Kahl 2002; Beerkens 2003; Fernández Navarro 
2003; Falcone et al. 2011). The probable presence 
of Fe2+ ions and Fe3+ ions dissolved in the glass 
could contribute to the absorption in the IR region.

Enamel and grisaille had a higher apparent 
surface temperature in comparison with the glass 
substrate (Figure 3). Variations of up to 2 ºC were 
observed in the same glass piece depending on the 
absence or presence of vitreous surface layers. 

Figure 3. Apparent surface temperature maps from a) the Dining room stained-glass window at 18:04 and b) the Atelier 
stained-glass window at 16:23

a b
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High-lead glasses have a lower specific heat than 
soda-lime silicate glasses (Sharp and Ginther 1951; 
Fernández Navarro 2003), which means that, for 
the same incident energy, the temperatures of the 
enamel and grisaille (with lead glass) will increase 
more than the glass substrate without surface 
paint.

The maximum apparent surface temperature also 
depends on the colour of the enamel and grisaille. 
The bottom right panel of the Atelier window 
experienced the greatest temperature range 
because this area receives the maximum impact 
of direct solar radiation, due to the orientation 
and the architectonics of the building. The 
temperature of this area also increased due to the 
presence of dark, opaque paint, probably from 
retouching. The left panel, as viewed from inside 
the building, is shadowed by the architectural 
features; however, the iris and the bird, both 
painted with blue enamel, showed significant 
increases in temperature in comparison with the 
surrounding glass: 1 ºC during the morning and up 
to 2.5 ºC during direct solar irradiation (Figure 3).

Point analysis on different enamels from the 
Atelier window confirmed that thermal behaviour 
depends on the colour of the enamel (Figure 4). 
The colourless glass had the lowest temperature 
with direct solar radiation, followed by light-
coloured enamels, such as the pale pink. Red, 
bluish-green, and blue enamels had higher 

temperatures with direct solar radiation; and, 
darker enamels, such as brown and dark blue, 
showed the highest temperatures (Figure 4). 
These latter materials were dark vitreous paints, 
some of them from a previous restoration, with 
iron oxides in their composition, fostering 
intense absorption of the thermal radiation and, 
resultantly, increasing the apparent surface 
temperature (Palomar et al. 2018a). It should be 
noted that the temperature variation between 
colourless and dark brown is about three degrees 
Celsius. This increase in the darker layers favours 
a higher thermal expansion of the surface layer in 
comparison with the support glass, which could 
cause fissures and detachments.

Increased temperature was also detected in the 
upper part of the Atelier window (Figure 5). 
Thermal variations of up to 3 ºC occurred between 
the upper and lower parts of the window. This 
phenomenon relates to the protective glazing, 
which is placed less than 3 cm from the historic 
panel with very small slits for ventilation. This 
nearly airtight protective glazing traps warm air in 
the upper part of the window panel, increasing the 
temperature of this part of the panel (Figure 5). If 
proper ventilation slits were in place, the air would 
be circulating with a ‘chimney’ effect, allowing 
warm air be vented at the top, and avoiding its 
accumulation in the upper part of the panel 
(Oidtmann 1994; Villaro Amurrio 2016).

Figure 4. Detail of the Atelier window, and the thermal variation of different points marked with yellow circles; sample areas 
average temperature over 2.5 cm2
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